The Effects of Metadata Corruption on NFS

Swetha Krishnan, Giridhar Ravipati,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Barton P. Miller

Department of Computer Sciences, University of Wisconsin-Madison

{swetha, giri, dusseau, remzi, bart}@cs.wisc.edu

ABSTRACT

Distributed file systems need to be robust in the face ofréslun
this work, we study the failure handling and recovery me@ras

of a widely used distributed file system, Linux NFS. We stioely t
behavior of NFS under corruption of important metadata tiyio
fault injection. We find that the NFS protocol behaves in unex
pected ways in the presence of these corruptions. On sonae occ
sions, incorrect errors are communicated to the client agtion;

in others, the system hangs applications or crashes outrigha
few cases, success is falsely reported when an operatiofaiied.
We use the results of our study to draw lessons for futuregdssi
and implementations of the NFS protocol.

Categories and Subject Descriptors:
D.4.5 [Operating Systems]: Reliability
Subjects: Fault-tolerance

General Terms. Experimentation, Reliability

Keywords: NFS, metadata corruption, fault tolerance, reliability,
retry, silent failure, inconsistency

1. INTRODUCTION

Systems fail. Processors compute bad results, despiteaiie v
resources spent on design and test [14]; bits in memory gekifti,
despite the presence of ECC protection [13]; disk sectorsrbe
inaccessible or corrupt, despite the intricate internaihireery drives
contain for reading and writing data [8, 10].

dling partial disk faults [18], leading to unexpected cesbr vol-
ume corruption. Similarly, open-source virtual memorytegss
have been found to exhibit poor behavior in the face of digk$g1].

Beyond the disk system, the memory subsystem is an increas-
ing source of faultiness in commodity systems, for a varigty
reasons. First, inexpensive memory (often found in deskiap
tems) often forgoes ECC, thus increasing the chance of rarfuio
flips; worse, ECC found in typical commodity memory systems
may not be strong enough to mask all errors [13]. Second,\bugg
software, due to concurrency troubles [9] or poor memory -man
agement [6, 15], may overwrite arbitrary memory locatiofisird,
in a distributed setting, weak network checksums may notigeo
strong enough protection of packets [11]. Finally, malisicoft-
ware could surreptitiously alter data fields or network askwith
the hope of causing damage or gaining privilege [4].

In this paper, we examine system robustness in the presénce o
memory corruption. We focus our study on one important syste
the Linux implementation of the Network File System (NFS)-pr
tocol [20]. NFS is a widely used distributed protocol, andsth
critical to the operation of many computing infrastrucgird-ur-
ther, NFS already has many built-in safeguards againstréiin-
deed, the original NFS can seamlessly continue operatispitge
the presence of server crashes [19]. Although it has manwkno
problems [12], we believe studying the behavior of NFS tsthe
an interesting endeavor.

To conduct this study, we apply a new memory corruption frame
work within the Linux client and server NFS stacks. The frame

Robust software must be designed to handle failures such aswork allows great control over the type of corruption we itise

these, and the history of reliable system design and impitane
tion is replete with examples of such systems. Robust stosgg-

we focus on controlled corruption of metadata values, torsee
Linux NFS reacts when these values have unexpected contents

tems, such as those from EMC and Network Appliance, have many Our results are as follows. We observe that the Linux NFSitlie

guards built-in against disk failure, including parity,taanirror-
ing, and sophisticated checksums to ensure the integritatd
blocks [7, 21]. Reliable operating systems, such as thosehyu
IBM and Tandem, use process pairs and other techniqueseotdet
and recover from processor or memory faults [2].

commonly detects errors and invokes retry as a means of recov
ery; thus, the standard NFS approach of “if it didn't worky, tiry
again” is often successful in the face of memory corruptidow-
ever, in several cases, the system fails silently; the dperfails
but success is conveyed to the client application. In amatbe-

Many commodity open-source systems, however, do not have nario, a corrupted value causes Linux NFS to forgo hard-moun

these high levels of paranoia within them. For example, ece
work has shown that commodity file systems have difficulty-han

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

StorageSS’'07Qctober 29, 2007, Alexandria, Virginia, USA.

Copyright 2007 ACM 978-1-59593-891-6/07/0010 ...$5.00.

semantics. We also find that the Linux NFS client is partidyla
sensitive to bad procedure numbers, the presence of whids le
to client-side application hangs and kernel panics. Weodisca
number of inconsistencies in error handling; for examjie, game
operation returns different errors when attempted muatiphes.
The lessons from our study may be useful for future desigds an
implementations of the NFS protocol.

The rest of this paper is organized as follows. In Section&, w
describe our corruption framework, and in Section 3 we prese
our results. We present the lessons from our study in Sedtiand
conclude in Section 5.

NFS Client

Test Harness

POSIX Call

User Space

NFS Server

User Space -

Kernel Space

Kernel Space

A

NFS Metadata
3

________ -

RPC Metadata
4__,

RPC Metadata

Figure 1. Corruption Framework. The diagram shows the four
points at which our experiments introduce corruption in tHéFS
protocol stack.

2. METHODOLOGY

In this section, we discuss our methodology for studying how
NFS responds to metadata corruption. We first provide sonte NF
background, then discuss our corruption model, framewehich
metadata fields we corrupt, and finally the experimentalrenvi
ment we employ.

2.1 NFSBackground

The NFS protocol provides transparent remote access tecghar

POSI X operations | NFS procedures

read() | ookup, r ead

write() | ookup,write,conmmt
access() | ookup, access

stat() | ookup

statfs() | ookup, fsstat,fsinfo
readlink() | ookup, readl i nk
chmod() | ookup, setattr
getdirentries() | ookup, readdi r
create() | ookup, create
symlink() | ookup, sym i nk

link() | ookup, I ookup, I i nk
unlink() | ookup, r enove

chdir() | ookup

mkdir() | ookup, nkdi r,

rmdir() | ookup, rndi r

rename() | ookup, | ookup, r ename

Table 1: Workload for Test Harness. The test harness executes
the 16 file system POSIX operations shown in the fist columne th
second column shows the NFS procedures called by the POSIX
operations.

2.3 Corruption Framework

Figure 1 shows the architecture of our corruption framewtvk
introduce aest harnesshat exercises NFS through the client-side
file system POSIX API and eorrupter that injects metadata cor-
ruption on both the client and server. We discuss these twiutas
in more detail.

The test harnesss a user-level application containing a suite
of file system POSIX API calls. As shown in Table 1, the test
suite contains 16 POSIX operations, which in turn invoketalto
of 18 NFSv3 procedures and exercise the NFS and RPC server and
client code in the kernel. Each experiment begins with a yewl

file systems [5, 19]. NFS is based on the Remote Procedure Callmounted file system and issues a single POSIX operation fiora

(RPC) protocol [3], which eases the development of cliemt«sr
applications. The NFS protocol is designed to be machiner-op
ating system, network, and transport-protocol independ&tS
achieves this independence through the use of RPC primibivit
on top of the eXternal Data Representation (XDR) layer.

We evaluate the Linux implementation of NFS version 3 [16], a
version 3 is still the most widely used. We deploy NFS over UDP
in all our experiments.

2.2 Corruption Model

In our corruption model, corruptions are:

e Carefully targetedFor each experiment, exactly one NFS or
RPC metadata field is corrupted; the corruption is performed
for either a single NFS procedure or for all NFS procedures.

e Persistent.A retry of the same NFS request experiences the
same corrupted value.

e Not sticky.Corruption is turned off at the end of each exper-
iment and any NFS calls performed after the experiment do
not experience corruption.

e Isolated. Corruptions do not affect other parts of the NFS
distributed environment, including other NFS clients. Spe
ically, we inject corruption only for NFS version 3 requests
over UDP that originate from our client’s IP address.

gle block of a file, when applicable). Note that four NFSv3qao
dures not exercised: NFSPROC3_NULL, NFSPROC3_MKNOD,
NFSPROC3_READDIRPLUS and NFSPROC3_PATHCONF; we
believe these procedures are used relatively infrequently

The corrupter lets us corrupt NFS and RPC metadata at differ-
ent points in the network stack. Thus, the corrupter allog/sou
emulate memory errors that could occur due to hardware @muk|
software bugs, or maliciousness at various layers in thiesysin
our experiments, we corrupt metadata at four differenttsamthe
network stack across the client and server, as shown in€igun
all cases, the corruption is applied as the request or repavers-
ing down the stack. The corrupter is implemented by intrauyic
a new system callsfys_corrupt() as shown in Figure 1), that lets
us control corruption parameters from user space. Thusdoh
experiment, the parameters we control are: corruptiore giat.
turned on or turned off), the metadata field to corrupt, threuged
value for this metadata field, and the affected NFS proced(riee
change of a metadata field value to the value specified thrtheh
system call is performed by tle@rrupt() routine shown in Figure 1.

24 Corrupted Metadata

Since NFS is layered on top of RPC, the failure policy of NFS
interacts with that of RPC as well. Given that NFS and RPC have
more than 10 fields of metadata each, exhaustively cormmgtich
field is beyond the scope of this study. In this paper, we egplo
the sensitivity of NFS to corruption in five metadata fieldsins-

M etadata Layer | Point | Values Description
XID RPC | 4 XID+1, XID-1 Selected by the client to uniquely identify a
request-response pair

Direction RPC | 4 Not 1 Value in the header that identifies Call (0) or Reply (1)
Response length RPC | 4 Above and below length Appended to the RPC reply message buffer
Procedure Number | RPC 1,3 readtowite Procedure number to invoke on the server;

synl i nk torename found in the request header.
Filehandlesize NFS Above and below size | Size of the opaque reference to a file or directory

Table 2: Corrupted Metadata. The table shows the set of metadata that we have corruptedunexperiments. The columns indicate
whether the metadata is applicable to RPC or NFS; the corrigpt points as defined in Figure 1; the values to which we coriugne
metadata; and finally, a brief description of the purpose d¢fdt metadata.

action id (XID), call/reply direction, response buffer ¢gh, pro-

cedure number, and file handle size. We focus on this subset of

metadata because we believe each is used in critical veaysfor
response verification).

3.2 Call/Reply Direction Corruption

In our second experiment, we corrupted the value of the tilinec
field in the RPC reply header. Under correct operation, theceli
tion field contains a value of '1’ to indicate a reply. We cqoted

Table 2 summarizes where and how each of these five metadatans field both to an invalid valué.¢., 2) and to the value indicating

fields is corrupted. For RPC metadata, the corruption isllysua
performed on the server beneath the XDR layex, (point 4). For
NFS metadata, the corruption is performed on the serverdbene
the NFSD layeri(e., point 2). For practical reasons, we focus on
a subset of the possible values to which the metadata mayrbe co
rupted; these values are described in more detail whereppate.

2.5 Experimental Environment

We conduct all of the experiments described in this paper on
Emulab [22]. One machine is configured as an NFS server, with
one exported directory tree, while another is set up as andi&%
that performs a hard mount of the exported file system. Each of
these nodes run Red Hat Linux 9.0, a 2.4.20 Linux kernel. Ve us
Nfsdump v1.01 to view requests and replies between senctr an
client.

3. EXPERIMENTAL RESULTS

We now describe our results corrupting the metadata fields of
XID, direction, response buffer length, procedure numaed file
handle size. We present the observed behavior at the NF8, clie
from both an application and system perspective.

3.1 Transaction ID (XI1D) Corruption

Our first experiment evaluates the impact of a corrupted XID
field in the reply packet sent by the NFS server; this coraupts
injected at point 4 in Figure 1. We corrupted the XID to XID+ida
XID-1 independently for each NFS procedure invoked.

Observation 1: For our workloads, the NFS client detects XID
corruption and persistently retries the requelst.our experiments,
the NFS client detects that the reply does not corresporitetsin-
gle request it sent, since the XIDs do not match; hence, thatcl
considers the reply to be invalid, drops the received packed
retries the original request persistently. We note thatctlent is
not guaranteed to detect XID corruption for all workloadseafi-
cally, for workloads with concurrent NFS requests, if therapted
XID matches a different request, then the response may log-inc
rectly matched. In our workload, the client retries untiireption

is turned off, at which point it receives a reply with the eatrXID
and the operation succeeds (we verified the intention ofsigient
retry by inspecting the code). Given the procedure-callasgits
of the underlying RPC, the policy of persistent retries seappro-
priate.

a requesti(e. 0), on the server at point 4 in Figure 1. We tried
these experiments for each NFS procedure invoked by ouhnaest
ness, as well as for a special workload consistingoafnt (which
invokes the NFS procedurgst at t r, f sst at , andf si nf o).

Observation 2: The NFS client detects direction field corruption,
but only retries either two or four times, despite the facittthe
remote file system is hard-mountéthr some NFS procedure calls,
the corrupted direction field in the reply packet causes lieatdo
retry the NFS call two timesget attr, | ookup, read, conmi t,
access, readl i nk, f sstat, andf si nf o), while for others, the
NFS client retries four times.€.,wri t e, cr eat e, synl i nk, | i nk,
renove, nkdir, rndir, setattr, renane, andreaddir). The
client stops retrying after a few times, which does not makeh
semantics of the remote file system being hard-mounted.

Observation 3: If the direction field is corrupted, the error is
not always correctly propagated to the applicatioin the case
of the statfs()POSIX call (which invokes the proceduresst at
andf si nf 0), the return code ofuccess is incorrectly returned to
the client application; however, as expected, if the resoftthe
operation are examined, they are incorrexg(block size = -1,
number of blocks = -1, free blocks count= -1). We note that the
NFS layer at the client does detect the corruption, sincdeheel
log shows “nfs_statfs: statfs error = 5”. Thus, this is a ogken
NFS does not propagate the error to the application on tleatcli
butfails silently. For all other POSIX calls, an error BfO is prop-
agated to the client application.

Observation 4: During anount of the file system, direction field
corruption eventually causes the client to switch to NFSieer 2
procedures. Specifically, when the direction field is corrupted dur-
ing a mount, the client retries the call twice (with the sanfeSN
version 3 procedure, as expected). If these retries fal ctient
tries the same call with its version 2 equivaleatq, if version 3
getattr fails, version 2get at t r is issued; if version 3 sst at
or f si nf o fail, then version &t at f s is tried). Interestingly, the
client then permanently switches to only version 2 procesliior
all subsequent POSIX calls, even though their version 3vegui
lents are untainted. Finally, if the direction field is cqted for
both version 3 and version 2 NFS calls, then the mount fafler a
the client retries the version 3 procedure twice and theimer3
procedure five times.

3.3 Response Buffer Length Corruption

fault occurs and the kernel continues to panic after a rebiduis,

The length of the RPC response buffer is maintained in the re- corruption from one application can hamper the robustnésiseo

sponse buffer structure and is sent to the client. We caetlpt
the length to values both below and above the original lenath
point 4 in Figure 1. We have tested the impact of responsebuff
length corruption on thesad(), write(), create() symlink() link()
unlink(), andstat() POSIX calls; the results for these cases are all
qualitatively similar, so we focus on thead() results in our expla-
nation.

Observation 5: The NFS client only sometimes detects corruption
of the response buffer length, depending upon the valueitile
length is corrupted. The application sometimes sees ssices
sometimes failureSpecifically, the two cases are as follows. First,
when the response buffer length is incremented or decreuent
by only a very small amount, the corruption is never detetied
the client and the POSIX operation always succeeds. (Nate th
the server kernel does detect the corruption before relgasie
socket buffer.) Second, when the reported length is dearsde
more drastically, the corruption is detected and the clyemforms

a number of retries upon failure, depending on what metaalata
pears truncated. For example, withead() for 1024 bytes (which
has an actual response buffer length of 1056 bytes), cdorupd
values between about 1036 and 8 bytes causes no retriesp-corr
tion to values around 5 causes two retries, and to valuesidrdu
causes persistent retries.

Observation 6: If the POSIX operation is reissued by the client
application, the operation may return success (even thabglne-
sponse buffer length remains corrupted). The exact behagiin
varies with the corrupted response lengthVhen the corrupted
value is near that of the actual length, then, on the secopli-ap
cation attempt ofead(), the data returned to the application is in-
tact and complete. When the decremented amount is morecgrast

entire client.

Observation 8: When the same corruption occurs on the server, the
effects are less drastic and an error is reported to the ¢laaplica-
tion. At the server side, the effects are less severe since camupt
happens after the procedure number is retrieved but be&medd

ing its arguments. Whenead is corrupted tow i t e, the call fails

to return a reply to the client, so the client retries the twite be-
fore propagating an error to the application. Wigni i nk is cor-
rupted tor enane, a reply with an error is returned to tkgni i nk

call; the client does not retry and propagates EBADHANDLE to
the application.

3.5 FileHandle Size Corruption

The NFS file handle is an opaque reference to a specific file or
directory, constructed by the server. We corrupt the sizbefile
handle returned to the client; the size value is especiatiyor-
tant to an NFS version 3 client because version 3 supporislar
length file handles. The corruption was injected at the seside,
between the NFSD and RPC layers, at point 2 in Figure 1. The
NFS procedures that we test that return a file handle ao&up,
create, synink, andmkdi r. We changed the file handle size
for these four procedures to both lower and higher values fiee
actual.

Observation 9: The NFS client detects file handle size corrup-
tion and returns an error to the client application in mostsea.

In a few cases, success is falsely reported to the applicatdad

in few other cases, different error codes are returned ontiplal
attempts by the applicationBoth | ookup andcr eat e return an
error if the file handle size is less than the actual size. Ferd()
POSIX call (which invokes ookup), the error is set to EIO the

the read() operation returns success with the number of bytes read first time and EBADHANDLE on the second application attempt.

as being equal to the number of bytes requested, but iny,ethlé
data is truncated; thus, from the client’s perspectiveetieasilent
failure. Finally, for read()with very small corrupted buffer lengths,
the second client attempt fails with an error code of eitHeFEO-
SUPPORT or EIO.

3.4 Procedure Number Corruption

The RPC request contains a field for the procedure numbeeof th
NFS procedure whose invocation is being requested. We mteatu
this field at two different points in separate experiments te
client (point 1), we corrupted the procedure number afterRPC
layer hands off the request to the XDR layer for encoding tloe p
cedure and its arguments; on the server (point 3), we cauuipt
after the RPC layer retrieves the procedure number fromehdér,
but before it calls into XDR to decode the arguments cornedpo
ing to the procedure. To limit the space of our study, we |ooke
procedures that have similar arguments since these pnacpdirs
are more likely to confuse the server when interchanged.epert
results from corruptingead tow i t e andsymn i nk tor enane.

Observation 7: The NFS client detects but runs into kernel ex-
ceptions when the procedure number is corrupted beforedéngo
itin the requestCorruptingr ead towr i t e on the client causes not
only the application to terminate with a segmentation faaut also

the kernel to dereference a null pointer. Even if the coraupts
turned off and the operation is retried, the applicationgsaand the
remote file system cannot be remounted on this client. Conwip
syn i nk to r enane makes the system unusable: a kernel paging

For awrite()(which invokescr eat e) if the corruption changes the
size by a small amount, then the corruption goes undetectéd a
the write() succeeds; however, an error is returned to the applica-
tion on closing the file. Fosyni i nk andnkdi r with a bad file
handle length, success is reported to the client applicabiat sub-
sequenteadlink() andgetdirentries(Joperations fail with EIO and
EBADHANDLE respectively.

4. LESSONSLEARNED

From our experimental results and observations, we haveiide
fied the following lessons for error handling in NFS.

Lesson 1: “Giving up” violates hard mounting semantics, and may
not be the best way to tackle failufgor example, we saw that the
client retries persistently given XID corruption, but doest do so
given direction corruption. Overall, we saw that corrugtiiffer-
ent fields led to different numbers of retries. If corruptisrtran-
sient, operations may succeed if persistently retried.

Lesson 2: When different versions are available, try them athis
lesson was illustrated when the mount call invoked NFS wear&i
routines when the version 3 routines failed. It would beregéng
to try version 2 routines for POSIX calls other than mount.

Lesson 3: Inconsistency in behavior indicates that the error han-
dling code in NFS is likely diffusedinconsistent error handling
was seen in many cases, but corrupting the response buffgthle
to different values led to some of the most varied results; ith

consistency makes the policy hard to understand and pretiect
expose and enforce a clear and consistent policy, it migipt toe
consolidate error handling in a central location.

Lesson 4: Too much trust of the NFS server can be harmful; there- 6

fore it would be wiser for the NFS client to do a greater degoée '
sanity checking.If the NFS design had well-defined formats for [
messages or incorporated checksums for the metadata anthdat

the packet, the client would not have to rely on the lengtheaé- 12
turned by the server for the reply buffer. In the current giesthe

client ends up returning failure or repeatedly retryinguesss, in 3]
spite of the fact that the reply buffer is actually intact audessi-

ble. H
Lesson 5: Inconsistent error codes may confuse client applica- 5
tions. We saw that slight differences in corruption values led to [¢]

different error codes being returned to clients. Althoudl ks
adequately returned in most cases, EPFNOSUPPORT and EBAD- (7]
HANDLE were inappropriately returned when the responsgtten
and the procedure number, respectively, were corruptedetarror
codes may cause applications to respond incorrectly.

8l

0]
Lesson 6: Careful sanity checking of pointers between layers of the (10]
NFS protocol stack could avoid crashd$e client-side corruption
results indicate that between the RPC and XDR layers, psinte

are not checked and dereferencing a NULL pointer drives éne k [
nel into unstable states. Since XDR uses no data typinge tiser
an implicit assumption that the application parsing an Xbi@an [(12]
knows what type of data to expect [5]. Therefore, NFS shoald v [13]
ify all pointers before passing them to XDR.

[14]

Lesson 7: When in doubt, it is better to report “failure” than “suc-
cess”.In many cases (such as those explained in Observation 6 for [15]
response buffer length corruption and Observation 9 forhide-

dle size corruption), we saw that NFS incorrectly returnscess [16]
to an application when the operation actually failed. As&lsuc-
cess not only misinforms the user, because subsequentiopsra [17]
will return failure, but may also render important data itessible.
Hence, it is important that errors are propagated by the NieStc [18]
all the way to the application.

[19]

5. CONCLUSIONS

We have conducted a study of how the NFS server and client [20]

cope with corrupted metadata. Our important observatioahat (21]
NFS does not always deal well with metadata corruption. e se
improper errors, or false notification of success being eged to [22]

the client application, and also see the client’s kernehdeid-
versely affected in a few cases. We feel that the main lestpns
be gained from this study are that the NFS protocol shouldemor
carefully limit the amount of trust between the server andnt)
have both ends do more careful sanity checking, have erimor ha
dling unified to make it consistent, report errors more cdheto
applications, and issue retries instead of giving up afté&ilad
operation.

This study is by no means complete. First, our study is lichite
UDP as the transport, and it remains to be seen how NFS over TCP
reacts to metadata corruption. Another interesting studylevbe
to repeat these experiments for NFS Version 4 [17], whicheis d
signed to have better error recovery semantics and impreged
curity. Also, there are other interesting pieces of meta¢suich as
the write verifier) which we have not stressed; doing so wbelof
value. Experiments with more than one NFS client may alsklyie
interesting results. However, we believe that our prelanyrstudy

has already revealed interesting insights into NFS faihaolicies;
we hope that such insights will help developers take courdar
sures to improve the reliability of NFS as a distributed fifstem.

REFERENCES

L. N. Bairavasundaram, A. C. Arpaci-Dusseau, and R. Hhaki-Dusseau.
Dependability Analysis of Virtual Memory Systems.'8N-2006
Philadelphia, PA, June 2006.

W. Bartlett and L. Spainhower. Commercial Fault TolerenA Tale of Two
SystemslEEE Transactions on Dependable and Secure Computing
1(1):87-96, January 2004.

A. Birrell and B. Nelson. Implementing Remote ProcedGals. INSOSP '83
October 1983.

E. Brewer, P. Gauthier, I. Goldberg, and D. Wagner. B&&wvs in Internet
Security and Commerce. http://www.interesting-
people.org/archives/interesting-people/199510/m880Mhtml,

1995.

B. CallaghanNFS lllustrated Addison-Wesley, Inc., 2000.

J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosind A. Gupta.
Hive: Fault Containment for Shared-Memory Multiprocessém SOSP '95
Copper Mountain, CO, December 1995.

EMC Corporation. Symmetrix Enterprise Information @tge Systems.
http://www.emc.com, 2002.

G. F. Hughes and J. F. Murray. Reliability and Securityr#fID Storage
Systems and D2D Archives Using SATA Disk DrivésCM Transactions on
Storage 1(1):95-107, February 2005.

M. Isard and A. Birrell. Automatic Mutual Exclusion. IHotOS '07 San Diego,
CA, May 2007.

H. H. Kari, H. Saikkonen, and F. Lombardi. Detection affBctive Media in
Disks. InThe IEEE International Workshop on Defect and Fault Tolesam
VLSI Systempages 49-55, Venice, Italy, October 1993.

P. Karn, C. Bormann, G. Fairhurst, D. Grossman, R. Lug@i Mahdavi,

G. Montenegro, J. Touch, and L. Wood. Advice for Internetr&itvork
Designers. http://www.ietf.org/rfc/rfc3819.txt, Julp@4.

O. Kirch. Why NFS Sucks. IiProceedings of the Linux Symposium Volume
Two, Ottawa, Canadaluly 2006.

D. Milojicic, A. Messer, J. Shau, G. Fu, and A. Munoz. leasing relevance of
memory hardware errors: a case for recoverable programmaugls. In9th
ACM SIGOPS European Workshdfolding, Denmark, Sept. 2000.

T. Nicely. Bug in the pentium fpu.
http://www.trnicely.net/pentbug/bugmaill.html, Oc@9.

G. Novark, E. D. Berger, and B. G. Zorn. Exterminator:tématically
Correcting Memory Errors with High Probability. PLDI ‘07, San Diego, CA,
June 2007.

B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, Del,end D. Hitz. NFS
Version 3 Design and Implementation.Proceedings of the Summer 1994
USENIX Conference, Boston, Massachusédtiae 1994.

B. Pawlowski, S. Shepler, C. Beame, B. Callaghan, MI€Ei®. Noveck,

D. Robinson, and R. Thurlow. The NFS Version 4 Protocol.
http://www.connectathon.org/talks97/index.html, 1997

V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, Hs8nawi, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. IRON File SysténSOSP '05
pages 206-220, Brighton, UK, October 2005.

R. Sandberg. The Design and Implementation of the Suwdi& File System.
In Proceedings of the 1985 USENIX Summer Technical Conferpages
119-130, Berkeley, CA, June 1985.

C. M. Smith. Linux NFS Overview. http://nfs.sourcefernet/, 2007.

R. Sundaram. The Private Lives of Disk Drives.
http://www.netapp.com/go/techontap/matl/sample/ @@0@esiliency.html,
February 2006.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprésisl. Newbold,

M. Hibler, C. Barb, and A. Joglekar. An Integrated Experita¢&Environment
for Distributed Systems and Networks.@SDI '02 pages 255-270, Boston,
MA, December 2002.

