
The Effects of Metadata Corruption on NFS

Swetha Krishnan, Giridhar Ravipati,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Barton P. Miller

Department of Computer Sciences, University of Wisconsin-Madison

{swetha, giri, dusseau, remzi, bart}@cs.wisc.edu

ABSTRACT
Distributed file systems need to be robust in the face of failures. In
this work, we study the failure handling and recovery mechanisms
of a widely used distributed file system, Linux NFS. We study the
behavior of NFS under corruption of important metadata through
fault injection. We find that the NFS protocol behaves in unex-
pected ways in the presence of these corruptions. On some occa-
sions, incorrect errors are communicated to the client application;
in others, the system hangs applications or crashes outright; in a
few cases, success is falsely reported when an operation hasfailed.
We use the results of our study to draw lessons for future designs
and implementations of the NFS protocol.

Categories and Subject Descriptors:
D.4.5 [Operating Systems]: Reliability
Subjects: Fault-tolerance

General Terms: Experimentation, Reliability

Keywords: NFS, metadata corruption, fault tolerance, reliability,
retry, silent failure, inconsistency

1. INTRODUCTION
Systems fail. Processors compute bad results, despite the vast

resources spent on design and test [14]; bits in memory get flipped,
despite the presence of ECC protection [13]; disk sectors become
inaccessible or corrupt, despite the intricate internal machinery drives
contain for reading and writing data [8, 10].

Robust software must be designed to handle failures such as
these, and the history of reliable system design and implementa-
tion is replete with examples of such systems. Robust storage sys-
tems, such as those from EMC and Network Appliance, have many
guards built-in against disk failure, including parity, data mirror-
ing, and sophisticated checksums to ensure the integrity ofdata
blocks [7, 21]. Reliable operating systems, such as those built by
IBM and Tandem, use process pairs and other techniques to detect
and recover from processor or memory faults [2].

Many commodity open-source systems, however, do not have
these high levels of paranoia within them. For example, recent
work has shown that commodity file systems have difficulty han-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
StorageSS’07,October 29, 2007, Alexandria, Virginia,USA.
Copyright 2007 ACM 978-1-59593-891-6/07/0010 ...$5.00.

dling partial disk faults [18], leading to unexpected crashes or vol-
ume corruption. Similarly, open-source virtual memory systems
have been found to exhibit poor behavior in the face of disk faults [1].

Beyond the disk system, the memory subsystem is an increas-
ing source of faultiness in commodity systems, for a varietyof
reasons. First, inexpensive memory (often found in desktopsys-
tems) often forgoes ECC, thus increasing the chance of random bit
flips; worse, ECC found in typical commodity memory systems
may not be strong enough to mask all errors [13]. Second, buggy
software, due to concurrency troubles [9] or poor memory man-
agement [6, 15], may overwrite arbitrary memory locations.Third,
in a distributed setting, weak network checksums may not provide
strong enough protection of packets [11]. Finally, malicious soft-
ware could surreptitiously alter data fields or network packets, with
the hope of causing damage or gaining privilege [4].

In this paper, we examine system robustness in the presence of
memory corruption. We focus our study on one important system:
the Linux implementation of the Network File System (NFS) pro-
tocol [20]. NFS is a widely used distributed protocol, and thus
critical to the operation of many computing infrastructures. Fur-
ther, NFS already has many built-in safeguards against failure; in-
deed, the original NFS can seamlessly continue operation despite
the presence of server crashes [19]. Although it has many known
problems [12], we believe studying the behavior of NFS to thus be
an interesting endeavor.

To conduct this study, we apply a new memory corruption frame-
work within the Linux client and server NFS stacks. The frame-
work allows great control over the type of corruption we insert;
we focus on controlled corruption of metadata values, to seehow
Linux NFS reacts when these values have unexpected contents.

Our results are as follows. We observe that the Linux NFS client
commonly detects errors and invokes retry as a means of recov-
ery; thus, the standard NFS approach of “if it didn’t work, try, try
again” is often successful in the face of memory corruption.How-
ever, in several cases, the system fails silently; the operation fails
but success is conveyed to the client application. In another sce-
nario, a corrupted value causes Linux NFS to forgo hard-mount
semantics. We also find that the Linux NFS client is particularly
sensitive to bad procedure numbers, the presence of which leads
to client-side application hangs and kernel panics. We discover a
number of inconsistencies in error handling; for example, the same
operation returns different errors when attempted multiple times.
The lessons from our study may be useful for future designs and
implementations of the NFS protocol.

The rest of this paper is organized as follows. In Section 2, we
describe our corruption framework, and in Section 3 we present
our results. We present the lessons from our study in Section4, and
conclude in Section 5.

V F SN F SR P CX D RT R A N S P O R TI P

T e s t H a r n e s s C o r r u p t e r (u s e r)S y s c a l lH a n d l e rK e r n e l S p a c eU s e r S p a c e s y s _ c o r r u p t(a r g s)P O S I X C a l l
R P C M e t a d a t ac o r r u p t ()1 V F SN F S DR P CX D RT R A N S P O R TI P

C o r r u p t e r (u s e r)S y s c a l lH a n d l e rK e r n e l S p a c eU s e r S p a c e s y s _ c o r r u p t(a r g s)
R P C M e t a d a t a

c o r r u p t ()324N F S M e t a d a t a
N F S S e r v e rN F S C l i e n t

R P C M e t a d a t a
Figure 1: Corruption Framework. The diagram shows the four
points at which our experiments introduce corruption in theNFS
protocol stack.

2. METHODOLOGY
In this section, we discuss our methodology for studying how

NFS responds to metadata corruption. We first provide some NFS
background, then discuss our corruption model, framework,which
metadata fields we corrupt, and finally the experimental environ-
ment we employ.

2.1 NFS Background
The NFS protocol provides transparent remote access to shared

file systems [5, 19]. NFS is based on the Remote Procedure Call
(RPC) protocol [3], which eases the development of client-server
applications. The NFS protocol is designed to be machine, oper-
ating system, network, and transport-protocol independent. NFS
achieves this independence through the use of RPC primitives built
on top of the eXternal Data Representation (XDR) layer.

We evaluate the Linux implementation of NFS version 3 [16], as
version 3 is still the most widely used. We deploy NFS over UDP
in all our experiments.

2.2 Corruption Model
In our corruption model, corruptions are:

• Carefully targeted.For each experiment, exactly one NFS or
RPC metadata field is corrupted; the corruption is performed
for either a single NFS procedure or for all NFS procedures.

• Persistent.A retry of the same NFS request experiences the
same corrupted value.

• Not sticky.Corruption is turned off at the end of each exper-
iment and any NFS calls performed after the experiment do
not experience corruption.

• Isolated. Corruptions do not affect other parts of the NFS
distributed environment, including other NFS clients. Specif-
ically, we inject corruption only for NFS version 3 requests
over UDP that originate from our client’s IP address.

POSIX operations NFS procedures
read() lookup, read
write() lookup, write, commit
access() lookup, access
stat() lookup
statfs() lookup, fsstat, fsinfo
readlink() lookup, readlink
chmod() lookup, setattr
getdirentries() lookup, readdir
create() lookup, create
symlink() lookup, symlink
link() lookup, lookup, link
unlink() lookup, remove
chdir() lookup
mkdir() lookup, mkdir,
rmdir() lookup, rmdir
rename() lookup, lookup, rename

Table 1: Workload for Test Harness. The test harness executes
the 16 file system POSIX operations shown in the fist column; the
second column shows the NFS procedures called by the POSIX
operations.

2.3 Corruption Framework
Figure 1 shows the architecture of our corruption framework. We

introduce atest harnessthat exercises NFS through the client-side
file system POSIX API and acorrupter that injects metadata cor-
ruption on both the client and server. We discuss these two modules
in more detail.

The test harnessis a user-level application containing a suite
of file system POSIX API calls. As shown in Table 1, the test
suite contains 16 POSIX operations, which in turn invoke a total
of 18 NFSv3 procedures and exercise the NFS and RPC server and
client code in the kernel. Each experiment begins with a newly
mounted file system and issues a single POSIX operation (for asin-
gle block of a file, when applicable). Note that four NFSv3 proce-
dures not exercised: NFSPROC3_NULL, NFSPROC3_MKNOD,
NFSPROC3_READDIRPLUS and NFSPROC3_PATHCONF; we
believe these procedures are used relatively infrequently.

Thecorrupter lets us corrupt NFS and RPC metadata at differ-
ent points in the network stack. Thus, the corrupter allows us to
emulate memory errors that could occur due to hardware problems,
software bugs, or maliciousness at various layers in the system. In
our experiments, we corrupt metadata at four different points in the
network stack across the client and server, as shown in Figure 1. In
all cases, the corruption is applied as the request or reply is travers-
ing down the stack. The corrupter is implemented by introducing
a new system call (sys_corrupt(), as shown in Figure 1), that lets
us control corruption parameters from user space. Thus, foreach
experiment, the parameters we control are: corruption state (i.e.
turned on or turned off), the metadata field to corrupt, the corrupted
value for this metadata field, and the affected NFS procedures. The
change of a metadata field value to the value specified throughthe
system call is performed by thecorrupt() routine shown in Figure 1.

2.4 Corrupted Metadata
Since NFS is layered on top of RPC, the failure policy of NFS

interacts with that of RPC as well. Given that NFS and RPC have
more than 10 fields of metadata each, exhaustively corrupting each
field is beyond the scope of this study. In this paper, we explore
the sensitivity of NFS to corruption in five metadata fields: trans-

Metadata Layer Point Values Description
XID RPC 4 XID+1, XID-1 Selected by the client to uniquely identify a

request-response pair
Direction RPC 4 Not 1 Value in the header that identifies Call (0) or Reply (1)
Response length RPC 4 Above and below length Appended to the RPC reply message buffer
Procedure Number RPC 1, 3 read to write Procedure number to invoke on the server;

symlink to rename found in the request header.
File handle size NFS 2 Above and below size Size of the opaque reference to a file or directory

Table 2: Corrupted Metadata. The table shows the set of metadata that we have corrupted in our experiments. The columns indicate
whether the metadata is applicable to RPC or NFS; the corruption points as defined in Figure 1; the values to which we corrupt the
metadata; and finally, a brief description of the purpose of that metadata.

action id (XID), call/reply direction, response buffer length, pro-
cedure number, and file handle size. We focus on this subset of
metadata because we believe each is used in critical ways (e.g., for
response verification).

Table 2 summarizes where and how each of these five metadata
fields is corrupted. For RPC metadata, the corruption is usually
performed on the server beneath the XDR layer (i.e., point 4). For
NFS metadata, the corruption is performed on the server beneath
the NFSD layer (i.e., point 2). For practical reasons, we focus on
a subset of the possible values to which the metadata may be cor-
rupted; these values are described in more detail where appropriate.

2.5 Experimental Environment
We conduct all of the experiments described in this paper on

Emulab [22]. One machine is configured as an NFS server, with
one exported directory tree, while another is set up as an NFSclient
that performs a hard mount of the exported file system. Each of
these nodes run Red Hat Linux 9.0, a 2.4.20 Linux kernel. We use
Nfsdump v1.01 to view requests and replies between server and
client.

3. EXPERIMENTAL RESULTS
We now describe our results corrupting the metadata fields of

XID, direction, response buffer length, procedure number,and file
handle size. We present the observed behavior at the NFS client,
from both an application and system perspective.

3.1 Transaction ID (XID) Corruption
Our first experiment evaluates the impact of a corrupted XID

field in the reply packet sent by the NFS server; this corruption is
injected at point 4 in Figure 1. We corrupted the XID to XID+1 and
XID-1 independently for each NFS procedure invoked.

Observation 1: For our workloads, the NFS client detects XID
corruption and persistently retries the request.In our experiments,
the NFS client detects that the reply does not correspond to the sin-
gle request it sent, since the XIDs do not match; hence, the client
considers the reply to be invalid, drops the received packet, and
retries the original request persistently. We note that theclient is
not guaranteed to detect XID corruption for all workloads; specifi-
cally, for workloads with concurrent NFS requests, if the corrupted
XID matches a different request, then the response may be incor-
rectly matched. In our workload, the client retries until corruption
is turned off, at which point it receives a reply with the correct XID
and the operation succeeds (we verified the intention of a persistent
retry by inspecting the code). Given the procedure-call semantics
of the underlying RPC, the policy of persistent retries seems appro-
priate.

3.2 Call/Reply Direction Corruption
In our second experiment, we corrupted the value of the direction

field in the RPC reply header. Under correct operation, the direc-
tion field contains a value of ’1’ to indicate a reply. We corrupted
this field both to an invalid value (i.e., 2) and to the value indicating
a request (i.e., 0), on the server at point 4 in Figure 1. We tried
these experiments for each NFS procedure invoked by our testhar-
ness, as well as for a special workload consisting ofmount (which
invokes the NFS proceduresgetattr, fsstat, andfsinfo).

Observation 2: The NFS client detects direction field corruption,
but only retries either two or four times, despite the fact that the
remote file system is hard-mounted.For some NFS procedure calls,
the corrupted direction field in the reply packet causes the client to
retry the NFS call two times (getattr, lookup, read, commit,
access, readlink, fsstat, andfsinfo), while for others, the
NFS client retries four times (i.e., write, create, symlink, link,
remove, mkdir, rmdir, setattr, rename, andreaddir). The
client stops retrying after a few times, which does not matchthe
semantics of the remote file system being hard-mounted.

Observation 3: If the direction field is corrupted, the error is
not always correctly propagated to the application.In the case
of the statfs()POSIX call (which invokes the proceduresfsstat
andfsinfo), the return code ofsuccess is incorrectly returned to
the client application; however, as expected, if the results of the
operation are examined, they are incorrect (e.g., block size = -1,
number of blocks = -1, free blocks count= -1). We note that the
NFS layer at the client does detect the corruption, since thekernel
log shows “nfs_statfs: statfs error = 5”. Thus, this is a casewhen
NFS does not propagate the error to the application on the client
but fails silently. For all other POSIX calls, an error ofEIO is prop-
agated to the client application.

Observation 4: During amount of the file system, direction field
corruption eventually causes the client to switch to NFS version 2
procedures.Specifically, when the direction field is corrupted dur-
ing a mount, the client retries the call twice (with the same NFS
version 3 procedure, as expected). If these retries fail, the client
tries the same call with its version 2 equivalent (e.g., if version 3
getattr fails, version 2getattr is issued; if version 3fsstat
or fsinfo fail, then version 2statfs is tried). Interestingly, the
client then permanently switches to only version 2 procedures for
all subsequent POSIX calls, even though their version 3 equiva-
lents are untainted. Finally, if the direction field is corrupted for
both version 3 and version 2 NFS calls, then the mount fails, after
the client retries the version 3 procedure twice and the version 2
procedure five times.

3.3 Response Buffer Length Corruption
The length of the RPC response buffer is maintained in the re-

sponse buffer structure and is sent to the client. We corrupted
the length to values both below and above the original length, at
point 4 in Figure 1. We have tested the impact of response buffer
length corruption on theread(), write(), create(), symlink() link(),
unlink(), andstat()POSIX calls; the results for these cases are all
qualitatively similar, so we focus on theread()results in our expla-
nation.

Observation 5: The NFS client only sometimes detects corruption
of the response buffer length, depending upon the value to which the
length is corrupted. The application sometimes sees success and
sometimes failure.Specifically, the two cases are as follows. First,
when the response buffer length is incremented or decremented
by only a very small amount, the corruption is never detectedby
the client and the POSIX operation always succeeds. (Note that
the server kernel does detect the corruption before releasing the
socket buffer.) Second, when the reported length is decremented
more drastically, the corruption is detected and the clientperforms
a number of retries upon failure, depending on what metadataap-
pears truncated. For example, with aread() for 1024 bytes (which
has an actual response buffer length of 1056 bytes), corruption to
values between about 1036 and 8 bytes causes no retries, corrup-
tion to values around 5 causes two retries, and to values around 2
causes persistent retries.

Observation 6: If the POSIX operation is reissued by the client
application, the operation may return success (even thoughthe re-
sponse buffer length remains corrupted). The exact behavior again
varies with the corrupted response length.When the corrupted
value is near that of the actual length, then, on the second appli-
cation attempt ofread(), the data returned to the application is in-
tact and complete. When the decremented amount is more drastic,
the read()operation returns success with the number of bytes read
as being equal to the number of bytes requested, but in reality, the
data is truncated; thus, from the client’s perspective there is asilent
failure. Finally, for read()with very small corrupted buffer lengths,
the second client attempt fails with an error code of either EPFNO-
SUPPORT or EIO.

3.4 Procedure Number Corruption
The RPC request contains a field for the procedure number of the

NFS procedure whose invocation is being requested. We corrupted
this field at two different points in separate experiments. On the
client (point 1), we corrupted the procedure number after the RPC
layer hands off the request to the XDR layer for encoding the pro-
cedure and its arguments; on the server (point 3), we corrupted it
after the RPC layer retrieves the procedure number from the header,
but before it calls into XDR to decode the arguments correspond-
ing to the procedure. To limit the space of our study, we looked at
procedures that have similar arguments since these procedure pairs
are more likely to confuse the server when interchanged. We report
results from corruptingread to write andsymlink to rename.

Observation 7: The NFS client detects but runs into kernel ex-
ceptions when the procedure number is corrupted before encoding
it in the request.Corruptingread towrite on the client causes not
only the application to terminate with a segmentation fault, but also
the kernel to dereference a null pointer. Even if the corruption is
turned off and the operation is retried, the application hangs and the
remote file system cannot be remounted on this client. Corrupting
symlink to rename makes the system unusable: a kernel paging

fault occurs and the kernel continues to panic after a reboot. Thus,
corruption from one application can hamper the robustness of the
entire client.

Observation 8: When the same corruption occurs on the server, the
effects are less drastic and an error is reported to the client applica-
tion. At the server side, the effects are less severe since corruption
happens after the procedure number is retrieved but before decod-
ing its arguments. Whenread is corrupted towrite, the call fails
to return a reply to the client, so the client retries the calltwice be-
fore propagating an error to the application. Whensymlink is cor-
rupted torename, a reply with an error is returned to thesymlink
call; the client does not retry and propagates EBADHANDLE to
the application.

3.5 File Handle Size Corruption
The NFS file handle is an opaque reference to a specific file or

directory, constructed by the server. We corrupt the size ofthe file
handle returned to the client; the size value is especially impor-
tant to an NFS version 3 client because version 3 supports variable
length file handles. The corruption was injected at the server-side,
between the NFSD and RPC layers, at point 2 in Figure 1. The
NFS procedures that we test that return a file handle arelookup,
create, symlink, andmkdir. We changed the file handle size
for these four procedures to both lower and higher values from the
actual.

Observation 9: The NFS client detects file handle size corrup-
tion and returns an error to the client application in most cases.
In a few cases, success is falsely reported to the application, and
in few other cases, different error codes are returned on multiple
attempts by the application.Both lookup andcreate return an
error if the file handle size is less than the actual size. For aread()
POSIX call (which invokeslookup), the error is set to EIO the
first time and EBADHANDLE on the second application attempt.
For awrite()(which invokescreate) if the corruption changes the
size by a small amount, then the corruption goes undetected and
the write() succeeds; however, an error is returned to the applica-
tion on closing the file. Forsymlink andmkdir with a bad file
handle length, success is reported to the client application, but sub-
sequentreadlink()andgetdirentries()operations fail with EIO and
EBADHANDLE respectively.

4. LESSONS LEARNED
From our experimental results and observations, we have identi-

fied the following lessons for error handling in NFS.

Lesson 1: “Giving up” violates hard mounting semantics, and may
not be the best way to tackle failure.For example, we saw that the
client retries persistently given XID corruption, but doesnot do so
given direction corruption. Overall, we saw that corrupting differ-
ent fields led to different numbers of retries. If corruptionis tran-
sient, operations may succeed if persistently retried.

Lesson 2: When different versions are available, try them all.This
lesson was illustrated when the mount call invoked NFS version 2
routines when the version 3 routines failed. It would be interesting
to try version 2 routines for POSIX calls other than mount.

Lesson 3: Inconsistency in behavior indicates that the error han-
dling code in NFS is likely diffused.Inconsistent error handling
was seen in many cases, but corrupting the response buffer length
to different values led to some of the most varied results; this in-

consistency makes the policy hard to understand and predict. To
expose and enforce a clear and consistent policy, it might help to
consolidate error handling in a central location.

Lesson 4: Too much trust of the NFS server can be harmful; there-
fore it would be wiser for the NFS client to do a greater degreeof
sanity checking.If the NFS design had well-defined formats for
messages or incorporated checksums for the metadata and data in
the packet, the client would not have to rely on the length value re-
turned by the server for the reply buffer. In the current design, the
client ends up returning failure or repeatedly retrying requests, in
spite of the fact that the reply buffer is actually intact andaccessi-
ble.

Lesson 5: Inconsistent error codes may confuse client applica-
tions. We saw that slight differences in corruption values led to
different error codes being returned to clients. Although EIO is
adequately returned in most cases, EPFNOSUPPORT and EBAD-
HANDLE were inappropriately returned when the response length
and the procedure number, respectively, were corrupted; these error
codes may cause applications to respond incorrectly.

Lesson 6: Careful sanity checking of pointers between layers of the
NFS protocol stack could avoid crashes.The client-side corruption
results indicate that between the RPC and XDR layers, pointers
are not checked and dereferencing a NULL pointer drives the ker-
nel into unstable states. Since XDR uses no data typing, there is
an implicit assumption that the application parsing an XDR stream
knows what type of data to expect [5]. Therefore, NFS should ver-
ify all pointers before passing them to XDR.

Lesson 7: When in doubt, it is better to report “failure” than “suc-
cess”. In many cases (such as those explained in Observation 6 for
response buffer length corruption and Observation 9 for filehan-
dle size corruption), we saw that NFS incorrectly returns success
to an application when the operation actually failed. A “false” suc-
cess not only misinforms the user, because subsequent operations
will return failure, but may also render important data inaccessible.
Hence, it is important that errors are propagated by the NFS client
all the way to the application.

5. CONCLUSIONS
We have conducted a study of how the NFS server and client

cope with corrupted metadata. Our important observations are that
NFS does not always deal well with metadata corruption. We see
improper errors, or false notification of success being conveyed to
the client application, and also see the client’s kernel being ad-
versely affected in a few cases. We feel that the main lessonsto
be gained from this study are that the NFS protocol should more
carefully limit the amount of trust between the server and client,
have both ends do more careful sanity checking, have error han-
dling unified to make it consistent, report errors more carefully to
applications, and issue retries instead of giving up after afailed
operation.

This study is by no means complete. First, our study is limited to
UDP as the transport, and it remains to be seen how NFS over TCP
reacts to metadata corruption. Another interesting study would be
to repeat these experiments for NFS Version 4 [17], which is de-
signed to have better error recovery semantics and improvedse-
curity. Also, there are other interesting pieces of metadata (such as
the write verifier) which we have not stressed; doing so wouldbe of
value. Experiments with more than one NFS client may also yield
interesting results. However, we believe that our preliminary study

has already revealed interesting insights into NFS failurepolicies;
we hope that such insights will help developers take countermea-
sures to improve the reliability of NFS as a distributed file system.

6. REFERENCES
[1] L. N. Bairavasundaram, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.

Dependability Analysis of Virtual Memory Systems. InDSN-2006,
Philadelphia, PA, June 2006.

[2] W. Bartlett and L. Spainhower. Commercial Fault Tolerance: A Tale of Two
Systems.IEEE Transactions on Dependable and Secure Computing,
1(1):87–96, January 2004.

[3] A. Birrell and B. Nelson. Implementing Remote ProcedureCalls. InSOSP ’83,
October 1983.

[4] E. Brewer, P. Gauthier, I. Goldberg, and D. Wagner. BasicFlaws in Internet
Security and Commerce. http://www.interesting-
people.org/archives/interesting-people/199510/msg00030.html,
1995.

[5] B. Callaghan.NFS Illustrated. Addison-Wesley, Inc., 2000.
[6] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu, and A. Gupta.

Hive: Fault Containment for Shared-Memory Multiprocessors. InSOSP ’95,
Copper Mountain, CO, December 1995.

[7] EMC Corporation. Symmetrix Enterprise Information Storage Systems.
http://www.emc.com, 2002.

[8] G. F. Hughes and J. F. Murray. Reliability and Security ofRAID Storage
Systems and D2D Archives Using SATA Disk Drives.ACM Transactions on
Storage, 1(1):95–107, February 2005.

[9] M. Isard and A. Birrell. Automatic Mutual Exclusion. InHotOS ’07, San Diego,
CA, May 2007.

[10] H. H. Kari, H. Saikkonen, and F. Lombardi. Detection of Defective Media in
Disks. InThe IEEE International Workshop on Defect and Fault Tolerance in
VLSI Systems, pages 49–55, Venice, Italy, October 1993.

[11] P. Karn, C. Bormann, G. Fairhurst, D. Grossman, R. Ludwig, J. Mahdavi,
G. Montenegro, J. Touch, and L. Wood. Advice for Internet Subnetwork
Designers. http://www.ietf.org/rfc/rfc3819.txt, July 2004.

[12] O. Kirch. Why NFS Sucks. InProceedings of the Linux Symposium Volume
Two, Ottawa, Canada, July 2006.

[13] D. Milojicic, A. Messer, J. Shau, G. Fu, and A. Munoz. Increasing relevance of
memory hardware errors: a case for recoverable programmingmodels. In9th
ACM SIGOPS European Workshop, Kolding, Denmark, Sept. 2000.

[14] T. Nicely. Bug in the pentium fpu.
http://www.trnicely.net/pentbug/bugmail1.html, Oct. 1994.

[15] G. Novark, E. D. Berger, and B. G. Zorn. Exterminator: Automatically
Correcting Memory Errors with High Probability. InPLDI ’07, San Diego, CA,
June 2007.

[16] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel, and D. Hitz. NFS
Version 3 Design and Implementation. InProceedings of the Summer 1994
USENIX Conference, Boston, Massachusetts, June 1994.

[17] B. Pawlowski, S. Shepler, C. Beame, B. Callaghan, M. Eisler, D. Noveck,
D. Robinson, and R. Thurlow. The NFS Version 4 Protocol.
http://www.connectathon.org/talks97/index.html, 1997.

[18] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S. Gunawi, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. IRON File Systems. InSOSP ’05,
pages 206–220, Brighton, UK, October 2005.

[19] R. Sandberg. The Design and Implementation of the Sun Network File System.
In Proceedings of the 1985 USENIX Summer Technical Conference, pages
119–130, Berkeley, CA, June 1985.

[20] C. M. Smith. Linux NFS Overview. http://nfs.sourceforge.net/, 2007.
[21] R. Sundaram. The Private Lives of Disk Drives.

http://www.netapp.com/go/techontap/matl/sample/ 0206tot_resiliency.html,
February 2006.

[22] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar. An Integrated Experimental Environment
for Distributed Systems and Networks. InOSDI ’02, pages 255–270, Boston,
MA, December 2002.

