
The fifteen year struggle of decentralizing
privacy-enhancing technology

Rolf Jagerman, Wendo Sabée, Laurens Versluis, Martijn de Vos,
Johan Pouwelse (course supervisor)

F

Abstract—Ever since the introduction of the internet, it has
been void of any privacy. The majority of internet traffic currently
is and always has been unencrypted. A number of anonymous
communication overlay networks exist whose aim it is to provide
privacy to its users. However, due to the nature of the internet,
there is major difficulty in getting these networks to become
both decentralized and anonymous. We list reasons for having
anonymous networks, discern the problems in achieving decen-
tralization and sum up the biggest initiatives in the field and their
current status. To do so, we use one exemplary network, the
Tor network. We explain how Tor works, what vulnerabilities this
network currently has, and possible attacks that could be used
to violate privacy and anonymity. The Tor network is used as a
key comparison network in the main part of the report: a tabular
overview of the major anonymous networking technologies in
use today.

1 INTRODUCTION

All feelings of privacy concerning browsing the
internet, talking on the telephone or location
tracking of cellphones are an illusion. In recent
years the need for privacy-enhancing technol-
ogy has become more apparent. Revelations by
Edward Snowden of government misconduct
and constitutional violations have sent shock
waves through the internet.

We failed to make an internet that is secure
and private. Although much research has been
done on anonymous internet communication,
only few systems have been actually imple-
mented and only one is actively being used.
One of the most important factors that impact
anonymity in a communication system is the
number of users. A sufficiently large number of
users are required for a system to make guaran-
tees about its ability to protect the privacy of its
users. This makes it difficult to introduce a new

anonymous internet system, due to the initial
lack of users. To support a large number of
users, such a network has to be decentralized.
A lack of decentralization would otherwise re-
sult in bottlenecks that place constraints on the
number of users. Relying on server bandwidth
donations has proven to be a difficult to sustain
strategy.

The most widely used anonymous commu-
nication system is Tor. In this technical report
we will analyse Tor and its semi-centralized
nature. Tor struggles to keep up with the band-
width demands of its users. As the number of
users increases, the need to decentralize Tor be-
comes more urgent. Decentralizing Tor isn’t an
easy task: After fifteen years of decentralization
attempts, the network is still partially central-
ized. Only few decentralized alternatives to Tor
exist, however they lack the user base to be
considered safe and useful. Examples include
Gnutella [32], Freenet [19] and Tapestry.

This technical report is structured as follow-
ing: In section 2 we will give an introduction
and overview of Tor. Known vulnerabilities in
Tor are discussed in section 3. After that, we
will talk about decentralization and its prob-
lems in section 4. The current state of decen-
tralized internet systems is discussed in sec-
tion 5. A comparison of existing decentralized
networks is made in section 6. Finally, we will
conclude and discuss our findings in section 7.

2 INTRODUCTION TO TOR

The implementation of The Onion Router
(TOR) was first described in 1996 by the U.S.

ar
X

iv
:1

40
4.

48
18

v1
 [

cs
.C

Y
]

 1
8

A
pr

 2
01

4

Navy Research Laboratory, as a means to pro-
tect government communications from digital,
as well as physical attacks, by hiding the loca-
tion of the communicating party or parties [15].
The idea behind onion routing traces back to
1981, where Chaum described it in his famous
paper “Untraceable electronic mail, return ad-
dresses, and digital pseudonyms”[9].

In 2002, the Tor project discontinued their
old code base and re-implement the project
as Tor, the Second Generation Onion Router.
They introduced perfect forward secrecy, direc-
tory servers, hidden services and more [10]. In
this section, we will explain the various com-
ponents of Tor, the structure of the network,
circuit creation and disadvantages of Tor.

2.1 Onion routing
As described in the original design paper of
The Onion Router [15], network traffic is for-
warded through a circuit of nodes, where each
node only knows the previous and next node
in the circuit. With a sufficiently long circuit
of (independent) nodes, this means that two
communicating parties can remain oblivious of
each others physical location.

Say we have a circuit consisting of four
nodes: our trusted client node (C), an (entry or
guard) relay node (X), a (middle) relay node
(Y) and an (exit) relay node (Z). In this case,
there are three relay nodes, but this is not
necessarily always the case as more middle
relay nodes can be added. A visualization of
this path can be seen in figure 1. Each node
has its own public key and a corresponding
private key. When building the circuit, our
client generates a distinct secret for each of
these nodes. More information about the circuit
setup, can be found in 2.4.

The payload of each packet flowing through
the circuit is first encrypted with the distinct se-
cret for last node Z, then with the distinct secret
for node Y , and last with the secret for node
X . With each layer of encryption, a header is
added with the address of the next node in the
circuit, plus the used distinct secret encrypted
with corresponding nodes public key.

After node X receives this packet from our
trusted node C, it decrypts the attached secret

with its private key, and uses that secret to
decrypt the rest of the packet. The result is a
header with the address for node Y and the
payload encrypted with secrets for the follow-
ing nodes in the circuit, which is forwarded to
node Y .

As a node receives a packet from the previ-
ous node, it peels off another layer of encryp-
tion, much as how you can peel an onion layer
for layer, and forwards it to the next node in the
circuit (as specified in the decrypted header).
When exit node Z decrypts the last layer, it
forwards the payload outside the network to
the original destination that our trusted client
C tried to contact, acting as a traditional proxy.

When exit node Z receives a response, this
whole process is applied in reverse order, en-
crypting the payload with its secret along the
way, instead of decrypting. When our client C
receives the packet, it peels off all the encryp-
tion layers to retrieve the unencrypted payload.

With the second generation onion routing
used in Tor, a modified algorithm is used to
derive the encryption keys, called telescoping
path-building, which also provides perfect for-
ward secrecy. This algorithm is described in
section 2.4.

2.2 Directory servers
The original Onion Router used an unsafe, de-
centralized node discovery mechanism called
in-band status updates. During such a status
update each node broadcasts known nodes to
its neighbours. An attacker could exploit this
to isolate and limit the knowledge of a client,
forcing connections through malicious nodes.
Another disadvantage is that in-band status
updates take longer to propagate throughout
the network and create a global consensus.

To mitigate these concerns, directory servers
were introduced to Tor during its reimple-
mentation. These directory servers keep a re-
dundant central consensus about the network.
They act as HTTP servers to which Tor nodes
can publish signed information about them-
selves. Tor clients can in turn download this
information, as seen in figure 1.

The information distributed by the directory
servers is signed. The keys to verify these

User

Internet

Directory
Server

Guard
Node

Relay
Node

Exit
Node

Fig. 1: The components of the Tor network. After downloading the node list from the Directory
Server, the user creates a circuit through a guard node, a relay node and an exit node. This
circuit is used to communicate (anonymously) with the internet.

signatures are preloaded in the Tor software,
along with the list of directory servers. This
implies trust by the Tor client in the directory
servers.

2.3 Relay and exit nodes
The Tor network consists of several compo-
nents. The clients in the Tor network are known
as onion proxies. The software to run an onion
proxy is available for free on the Tor website
[37] and is easy for users to configure. The
onion proxies are responsible for downloading
the directory information, establishing circuits
across the network and handling connections
from user applications.

The routing in the network is done by onion
routers, also called relay nodes. The relay
nodes relay the data from the onion proxy to
the web server across a circuit (circuits are
described in 2.4). Each onion router is con-
nected to every other onion router with a TLS
connection [17]. Each circuit has three type of
onion routers [20]:

• The entrance Tor router: this router is di-
rectly connected to an onion proxy and can
observe the origin of a request through the
Tor network. The entrance router sends the
packet to the middle Tor router.

• The middle Tor router: this router is con-
nected to the entrance router and the exit
router.

• The exit Tor router: this router is connected
to the web server. Note that the exit Tor
router is the only router that can observe
the final destination of the request.

The first router in a circuit is the entrance
router. The entrance router sends the data to
one of the middle routers which forwards the
data to the exit router.

2.4 Circuit creation
Data on the Tor network travels over several re-
lay nodes before it reaches its destination. Such
a selection of nodes is called a circuit. To ensure
both good performance and anonymity, a path
is chosen using a sophisticated path selection

algorithm. This algorithm selects nodes based
on the bandwidth of the nodes [35]. Nodes that
have more bandwidth, have a higher probabil-
ity to be chosen for the circuit creation. The
same node cannot be used more than once in
a single circuit.

Suppose Alice is an onion proxy that wants
to connect through the Tor network to a web
server. Circuit creation uses the Diffie-Hellman
key-exchange protocol [16] to establish a shared
secret between nodes. To create a new circuit,
Alice first sends a create cell with the first half of
the Diffie-Hellman handshake to the first node
in her selected path (for example, OR1). OR1

sends a created cell back with the second half of
the key along with a hash of the final key. Now
both Alice and OR1 have a shared key they use
to encrypt and decrypt data sent between them.

Alice now has a connection with the first
onion router in the circuit. To extend the circuit
to OR2, Alice first sends a relay extend cell to
OR1. This cell contains the address of the next
onion router in the circuit and the first half of
the key to use in the communication between
her and OR2. OR1 takes this first half of the
key and sends a create cell with this key to OR2.
When OR1 receives a created cell, OR1 passes
this cell to Alice. Now Alice and OR2 share a
common key. The same procedure can be used
to extend the circuit with more nodes.

2.5 Disadvantages
While Tor offers its users a high level of
anonymity, there are some disadvantages using
it. According to Dingledine et al [11], there
are six reasons why Tor is not optimal. In this
section, we will summarize these reasons and
explain what could be done to fix them.

• Tor’s congestion control does not work
well. The network has some problems han-
dling bulk transfers, such as download-
ing large files or streaming high-quality
videos. The congestion control could be
improved by using an unreliable protocol
such as UDP for links between Tor relays.
Goldberg et al. [2] have proposed PCTCP
which could improve the response time of
the Tor network by 60% and the download
time of files by 30%.

• Some Tor users put more traffic on the net-
work than they contribute by running an
onion router. This means that these users
are slowing the network down as they use
more traffic than giving back. A possible
solution for this is to throttle certain high-
bandwidth protocols such as BitTorrent at
exit nodes or at onion proxies.

• The Tor network doesn’t have the capacity
to handle all the users that want privacy on
the internet. According to the Tor Metrics
project [36], it takes about 6 seconds to
download 1 MiB of data.
Due to the fact that traffic travels over
multiple Tor nodes, the total amount of
transferred data in the network multiplies.
This is illustrated in figure 2. Normally,
when 1 GiB is transferred over the internet,
it has a network cost of 2 GiB1. By having
n hops, the amount of transferred traffic
would be multiplied by 2(n + 1). As Tor
uses 3 hops by default, this means that a
1 GiB transfer would result in a network
cost of 8 GiB. By increasing the amount of
onion routing nodes in the Tor network,
the capacity is increased. Incentives such
as LIRA [18] could make more users run an
onion router, thus increasing the capacity
of the network and making it faster.

• The current path selection algorithm of Tor
doesn’t distribute the load evenly over the
network. The problem is that the current
selection strategy is optimal when the net-
work is fully loaded. This is not always
the case. Using a better path selection al-
gorithm could increase the capacity of the
network and the overall user experience.

• Tor clients are not optimal at handling
latency and connection failures. For ex-
ample, if extending a circuit fails, the en-
tire circuit is abandoned. An improvement
would be to first try to extend the circuit to
some other places. If that fails, the circuit
could be abandoned. Also, a better timeout
mechanism could be chosen for building
circuits.

• Much of the overhead of the network is

1. 1 GiB upload by the sender and 1 GiB download by the
receiver, or 2 GiB in total.

TargetSource Hop 1 Hop 2 Hop n

. . .

1 2 n+1

Fig. 2: As traffic moves over Tor nodes, the total amount of bandwidth used in the network
increases. By using n hops, the total amount of network traffic would be multiplied by 2(n+1).

in downloading the directory information.
There is also overhead in the TLS connec-
tion between the nodes in the network.
According to Dingledine et al, removing
the empty TLS application record could
reduce the overhead in the TCP/IP header
by 6.3%.

The directory service generates overhead on
the network. Replacing this central authority
with a decentralized component, could reduce
the overhead of the network and improve per-
formance. In conclusion, this means that we
would like to see Tor decentralized. Although
much research has been done on the decentral-
ization of Tor, it still uses centralized compo-
nents today.

2.6 Tor stinks?
Tor is not only used by human rights activists.
It is also used by distributors of illegal content
and providers of illegal services, because it is
deemed untraceable. This serious problem is
disrupting Tor’s public image. A recent ex-
ample is the shutdown of Silk Road, which is
an online market for trading prohibited sub-
stances and other illegal goods [26]. The market
operated as a hidden Tor service. These services
are accessed through an onion address and not
an IP-address, hiding the physical location of
the service. This makes it very hard for agen-
cies to track and shut down these operations.

A recent research on the content and popu-
larity of Tor’s hidden services [7] has shown
that although there are Tor hidden services
that distribute illegal content, many hidden
services are resources devoted to human rights,
freedom of speech and information which is
prohibited in some countries. It is not clear
which type of service is more popular on Tor.

Unless hidden services are used, content
travels unencrypted through a Tor exit node.
Users running a Tor exit node could be held
responsible for distributing illegal content. The
possibility of being seen as the originator of
illegal content refrains users from running an
exit node. A possible solution could be to filter
the illegal content from the legal content. While
content filtering could be a possible solution, it
is an open question whether filtering is in line
with the principles of Tor and the internet.

3 TOR VULNERABILITIES AND ATTACKS

Besides the disadvantages mentioned in the
previous section, Tor also suffers from several
vulnerabilities that can be exploited through
attacks [1], [13], [6]. In this section we will
summarize some of the most well known prob-
lems with Tor as well as define the following
categories of attacks: browser based attacks,
low-resource routing attacks, Sybil attacks and
replay attacks.

3.1 Browser based attacks
Traffic analysis can be used to attack the
anonymity of a user (a Tor client) browsing
the web using Tor [1]. By misusing the exit
policy of Tor one can reduce the time required
to perform the analysis from O(nk) to O(n+k)
where n is the number of exit nodes and k is
the number of entry guards.

By running an HTTP exit node and a Tor
router that eventually will act as an entry node
in the network, an adversary can discover the
identity of a user. The exit node injects an invis-
ible iframe containing some JavaScript into any
web page that passes through it, each sending
a unique ID to a malicious web server. Every

ten minutes the Tor client chooses a new circuit
and eventually an unlucky Tor client picks and
uses the malicious entry node that was placed
in the network.

By performing traffic analysis to compare
the unique IDs of the web server and the
circuits passing trough the entry node, a user
can be identified. Disabling JavaScript does not
mitigate this, because a similar attack can be
set up only using the HTML meta refresh tag.
To increase the odds of a user choosing the
malicious exit node, one can run the exit node
on unpopular ports. There are usually only a
few exit nodes running on file sharing ports,
such as 4661 to 4666. Since Tor prefers older
circuits, using a denial of service attack against
the older exit nodes forces Tor into creating a
circuit with the malicious exit node.

The solution for the JavaScript injection at-
tack is disabling active content systems in the
browser. For the HTML only variant one would
have to use HTTPS to prevent man-in-the-
middle attacks.

3.2 Low-resource routing attacks
Another possible attack on the anonymity of
Tor is the so called low-resource routing at-
tack [6]. With this attack, it is possible for
an adversary to perform an end-to-end traffic
analysis with minimal resources, thus compro-
mising the anonymity Tor provides. The idea
of this attack is that a malicious onion router
can lie about its bandwidth, thus advertising
a much higher bandwidth than it actually has.
Because of the Tor path selection algorithm that
prefers high-bandwidth nodes, the chance that
a malicious entry and exit node are chosen is
high.

Once a malicious entry and exit node have
been chosen, an analysis of the traffic can be
done to link onion proxies with the web servers
they communicate with. Experimental research
in a test setting has shown that with a total of
66 non-malicious and 6 malicious nodes, is pos-
sible to compromise 46% of the built circuits. At
the request of the Tor community, this attack
hasn’t been tested on the live Tor network.
There are some extensions and improvements
to this attack. It is possible to perform a denial

of service attack on well used entry nodes,
forcing Tor clients to choose a new one. This
improves the chance that a Tor client chooses
a malicious entry node.

Bauer et al. proposed several solutions in
their paper. The first one is to actually verify
the resources of the nodes by, for example,
measuring the bandwidth and/or uptime of a
node. Bandwidth can be checked centralized or
decentralized: the disadvantage of a centralized
bandwidth check is that it generates much
overhead on the network. With distributed
bandwidth verification, Tor routers monitor
each other but this is not enough to detect
selective malicious nodes. Another solution is
to restrict the amount of routers that can be on
a single IP-address. The last solution proposed
is to change the routing strategy.

3.3 Sybil attacks
The Sybil attack is an attack where a single
attacker represents itself as millions of nodes
in a peer-to-peer system. Abusing this, the
attacker is able to propagate false assumptions
about the network to other nodes.

First described by Douceur [13], he mathe-
matically proves that this attack is always pos-
sible without a central authority that certifies
the participating nodes in one way or another.
The exception to this rule is what he calls ”ex-
treme and unrealistic assumptions of resource
parity and coordination among entities”, or
in other words: require all participants to do
something expensive (in terms of resources) to
identify themselves. This must be done within
a small enough time frame, so that an attacker
can’t do this in sequence, but all nodes must
do them in parallel.

A fully distributed network that implements
such a solution is the Bitcoin network [23], in
which computing power, and not the number
of nodes is important for the general network
consensus.

3.4 Replay attacks
A replay attack [28] happens when a malicious
entry node duplicates cells and sends them
again. Since Tor uses the counter mode of
Advanced Encryption Standard (AES-CTR) for

encryption and decryption, the counter will be
wrong when the duplicated package arrives
causing the circuit to be destroyed.

Using this, an accomplice exit router can, in
cooperation with the entry node, discover the
sender and receiver’s relationship. This attack
can also be used as a denial of service attack.
According to Pries et al., defending against this
attack is quite challenging and requires further
research.

4 PROBLEMS WITH DECENTRALIZING

Decentralization is a difficult research prob-
lem. A trusted central authority simplifies boot-
strapping, key management and user reputa-
tion. If one of these authorities were taken
control of, anonymity could be compromised.
When decentralizing a central authority, its
functionality needs to be dispersed across the
peers in the network. In this section we will
explain the various problems involving Tor
decentralization.

4.1 Incentives in decentralized systems
Tax evasion and environmental pollution can
be seen as forms of free-riding, a phenomenon
that is prominent in Tor. People predominantly
use more Tor bandwidth than they donate,
see section 2.5. There are multiple proposals
[12], [18] to introduce incentives into Tor, all
have failed. If one would also have to build an
incentive system into a decentralized system,
they would have to find a way to manage the
ratings of each client in the network, in such
a way that they cannot be falsely modified.
In other words, the reputation data has to be
accurate and reliable. Besides the integrity of
this data, the traffic it generates on the network
should have minimal impact on the overall
performance.

Rahman [30] proposes several options to
build incentives in a peer-to-peer network. The
first proposal that is described is the so called
Warm-glow Model. This model determines the
percentage of free-rides based on the proba-
bilistic population distribution. If the percent-
age is above a certain threshold, the system will
show signs of diminishing marginal returns.

The second proposal is using monetary
schemes. While it is not exemplified a lot, the
main idea is to use a virtual currency as incen-
tive. The problems with this approach are the
scalability and the hidden costs of this service.

The third proposal is Reciprocity-Based
Schemes. Using this approach, a peer main-
tains a behaviour history of other peers in
the network. These schemes can be based on
two somewhat reciprocities: direct reciprocity
or indirect reciprocity. The former are more
suitable for longer relationships between peers.
The latter is more scalable but they rely on third
party and must handle trust issues themselves.

4.2 NAT traversal
A truly decentralized system requires the par-
ticipating nodes to have direct connection to
each other. Because of the limited availability of
IPv4 network addresses, most consumer grade
internet connections only provide one network
address per subscriber, shared by all the de-
vices connected to the subscribers network us-
ing Network Address Translation (NAT). With
IPv4 network addresses getting more scarce,
some Internet Service Providers even put more
than one subscribers behind a single network
address, using a carrier-grade NAT.

A NAT-based system works by creating a
local, private network which a NAT-enabled
router connects to the internet. The local net-
work uses network addresses from the private
ranges (e.g. 10.0.0.0/8 or 192.168.0.0/16). When
a local device sends a packet to the internet,
the router replaces these private addresses, in-
cluding the source ports, with its own public
address before forwarding it to the internet. It
saves these translations in a local table. Once
it receives packets, it looks in this table and
replaces the public network address and port
with the associated private network address
and port. If no corresponding entry exists in
the routers table, the packet is dropped. This
means that when contacting a device behind a
NAT, there must be an existing entry in this
table.

There are several techniques to add an entry
to the routers NAT table. Universal Plug and
Play (UPnP) is one of those techniques, where

the local device uses an HTTP request to the
router to associate a port with the devices
private network address. This technique is not
available everywhere and sometimes consid-
ered a security risk. Different implementations
of NAT require different techniques, such as
hole punching, relaying or reversal, as de-
scribed by Wocker et al. [34].

4.3 Bootstrapping new nodes
If a Tor user decides to donate some of his
bandwidth by running a bridge or a relay
and thus creating a new node in the network,
there has to be a starting point where this new
node can discover neighbours in the network
to connect with. In Tor, a directory server can
tell the new node what his neighbours are and
where to find them [10].

Moving this system to a peer-to-peer base is
difficult: Dingledine et al. stated that this is in-
deed still an open problem. With decentralized
systems, there is no central directory server to
tell a new node where to locate neighbours.
Some systems such as Tarzan, MorphMix and
Pastry [33], [31] are decentralized but they do
suffer from performance issues.

4.4 Key exchange
With a decentralized network, using a central-
ized authority for managing the keys is not
possible. This means that for secure commu-
nication, peers have to exchange the keys di-
rectly with each other, without a trusted party
between them. Diffie-Hellman is a very pop-
ular algorithm for exchanging keys between
two parties. It is used in the circuit creation
in Onion Routing (see section 2.4) for exam-
ple. However, it is possible for an adversary
to manipulate the keys exchanged between
two parties, making the protocol vulnerable
to a man-in-the-middle attack. This weakness
makes it possible for an adversary to decrypt
all messages sent between the two parties.

Tor currently uses an interactive forward-
secret key-exchange protocol called the Tor Au-
thentication Protocol (TAP) [5]. This protocol
uses telescoping, which means that the initiator
negotiates session keys with each successive
hop in the circuit. There are several proposals

for more efficient key exchange methods. One
of them is ACE, an one-way authenticated key
exchange protocol. The authors of this methods
claim to have a 46% efficiency improvement on
the side of the client and nearly 19% on the
side of the onion routers. ACE requires clients
to send one extra element in the key exchange.
This does not introduce any overhead however,
because the element fits in the unused space in
a cell.

5 DECENTRALIZED
PRIVACY-ENHANCING SYSTEMS

Fully decentralized systems with large scale
usage are without exception based on the peer-
to-peer paradigm. Many such systems have
been proposed, yet only some have been imple-
mented and are currently in use and actively
maintained [22], [31], [3], [33], [24], [14], [32],
[4]. Here we focus on fully decentralized net-
works with the exception of Torsk (which is
almost fully decentralized but still requires a
neighbourhood authority).

5.1 Gnutella
Gnutella is a decentralized peer-to-peer net-
work used for distributed search of files. Since
the network is fully decentralized, peers in the
network are called servents, a combination of
the words servers and clients. Each peer can
act both as a server, answering queries, or as a
client, requesting and executing search queries.
In order for a client to bootstrap, a new peer
connects to one of several known hosts that are
almost always available 2. Once the peer has
joined, there are several messages a servent can
send out:

• A peer sends a PING message to its neigh-
bours to announce its presence. This mes-
sage is forwarded to other peers and each
peer sends a PONG message back.

• The peer can issue QUERY answers. Other
peers responds with a QUERY RESPONSE
message to specify whether the file that
was issued in the query, was found or not.

• To transfer items between peers, the GET
and PUSH messages are being used.

2. These peers can be found on http://gnutellahosts.com.

Gnutella is an unstructured network which
means that the placement of data items is
not based on any knowledge of the network
topology nor the contents of the file. To search
for a file, a flooding algorithm is used.

5.2 Freenet
In Freenet, each data item is represented by
a key that is independent of the location of
the file. Freenet is called a loosely structured
network because of this. To issue a query, the
request is passed from client to client where
each client makes a decision about the location
to send the request next.

There are three types of file keys in Freenet:
the first one is called the Keyword-Signed Key
(KSK) which is derived from a short descrip-
tion of the file. Another key is the Signed-
Subspace key (SSK) which enables personal
namespaces. This key contains a public and a
private key. The private key is used to store the
data and the public key is used in the queries
for the file. The third type of key is the Content-
Hash Key (CHK) which is used for updating
and splitting of contents.

The routing algorithm for storing and re-
trieving data is dynamic and can adjust to the
topology of the network. Each peer only has
knowledge about his neighbours. Each request
has a Hops-To-Live timer which indicates how
many peers the request may traverse. Each
peer decrements the timer by one and when
the timer reaches zero, the request isn’t for-
warded any more. Results of queries are being
cached in intermediate nodes to reduce the
time for a query response. To prevent looping
of the requests, each request contains a random
identifier. The peers that the request travels
through, keep track of these identifiers and
rejects the request if the request has already
been answered by the peer.

5.3 Tapestry
Tapestry is based on the Plaxton mesh data
structure, which maintains pointers to nodes in
the network whose IDs match the elements of
a tree-like structure of ID prefixes up to a digit
position. A property of Tapestry is that it offers
load distribution and routing locality.

Like Gnutella, peers can take the role of a
client, issuing requests, and the role of a server
where objects are stored. A peer can also func-
tion as a router, which forwards an incoming
message. The routing algorithm is based on
the destination ID of the packet. Routers are
using local routing maps to route messages to
the destination ID digit by digit. The routing
system ensures that each peer in the system
can be found in a logarithmic amount of hops.

Tapestry is a fundamental component of
OceanStore, a decentralized storage system.
Tapestry is also used in systems such as Bayeux
and SpamWatch, a decentralized spam-filtering
system.

5.4 Pastry
Pastry is very similar to Tapestry, but there are
some small differences. One of these differences
is the handling of network locality and data
object replication. Pastry also uses the Plaxton
mesh data structure for the routing algorithm.
Each peer in the network gets assigned a ran-
dom 128-bit identifier that is uniformly sam-
pled from the key space. Each node can be
found in about log(n) steps.

The Pastry overlay network is used in several
applications, such as Scribe, Squirrel and PAST.
Scribe is a system that has been built to send
multicast messages. Instead of relying on the
multicast infrastructure, multicast messages are
sent using only unicast services. Pastry is used
to create and manage multicast groups. Scribe
makes use of the organization, robustness and
reliability of the Pastry network.

Squirrel is a decentralized peer-to-peer web
cache. The network uses Pastry to locate its
objects and for the routing algorithm. Squirrel
allows users to share its web cache with other
users in the network, creating a large decentral-
ized web cache. Squirrel however introduces
some overhead when searching the cache. The
challenge is to keep this overhead as low as
possible.

PAST is a large scale persistent peer-to-peer
network that has been designed to store files.
It is built upon the Pastry network and the
main focus of PAST is providing performance,
scalability and security.

5.5 MorphMix
MorphMix [31] functions similar to both Tor
and MIX networks. It relies on nested encryp-
tion and routing traffic over multiple nodes to
ensure anonymity of its users’ communication.
Additionally, MorphMix uses the typical be-
haviour of a MIX network, where it reorders
messages that enter a node before sending
them out.

MIX networks are typically high latency and
traffic in it moves slow. Messages will have to
be stored on a node until enough messages
have arrived to start sending them out in a
random order. Often, cover traffic is used to
generate enough messages for the network to
obfuscate the real communication, which in
turn generates a lot of bandwidth overhead.
MorphMix has been developed as a low latency
and high performance network. As such, it will
not hold messages for very long, nor will it use
cover traffic.

In contrast to Tor, MorphMix does not fea-
ture a centralized node discovery mechanism.
Instead, every node is free to chose a set of
next nodes that will be the continuation of an
anonymous tunnel. A malicious node could se-
lect a colluding node to continue the tunnel and
therefore control the entire tunnel. To prevent
this, a witness node is appointed to mediate the
setup of an anonymous tunnel. Although this
makes the possibility of such an attack more
difficult, it doesn’t make it impossible.

An important part of MorphMix is the ability
to detect malicious tunnels. Tunnels that are set
up by well behaving nodes will select the next
nodes in the tunnel randomly. Malicious col-
luding nodes, however, will specifically select
nodes that are part of the malicious network
to continue the tunnel. This will reveal itself
in the fact that the probability of the selection
of certain nodes is increased. By using this
information it becomes possible, to an extent,
to detect malicious tunnels.

5.6 AP3
AP3 (Anonymizing Peer-to-Peer Proxy) [22]
makes cooperative, decentralized anonymous
communication possible. The AP3 system pro-
vides clients with three primitives: anonymous

message delivery, anonymous channels and
secure pseudonyms. Users are able to send
and receive unicast, multicast and anycast mes-
sages anonymously. The strategy that AP3 is
using for message delivery is similar to that
of Tarzan: it relies on a network of peers to
forward messages. A node along the request
path, does not know whether the node from
which it receives a message is the message’s
originator or simply another forwarding peer.

5.7 Tarzan
Tarzan [14] is a fully distributed peer-to-peer
anonymity network. It implements a network
address translator (NAT) to bridge between
nodes running Tarzan and the internet. This
means that services don’t have to be aware of
the fact they are running through Tarzan.

Tarzan requires knowledge of a few exist-
ing nodes to bootstrap and uses a gossiping
protocol to discover other nodes. Nambiar et
al. showed however that this does not scale
beyond roughly 10,000 nodes [25], [24].

Once Tarzan has knowledge of enough
nodes, it achieves its anonymity with much like
a Chaumian mix, with layered encryption and
routing through multiple hops. In contrast to
Tor and other networks, Tarzan uses cover traf-
fic to provide protection against traffic analysis
by a global advisory to find an initiator.

5.8 Tribler
Tribler is a social-based peer-to-peer file shar-
ing system backwards compatible with the Bit-
Torrent protocol [27]. Tribler considers social
phenomena and the sense of community as
important parts of file sharing. Although the
system is completely decentralized, it does not
yet provide its users with anonymity. However,
a modified Tor-like protocol for decentralized
use is currently in beta.

Tribler introduces a novel protocol called
BuddyCast. Peer and content discovery use
this protocol, which disseminates information
epidemically. Additionally, the protocol allows
users to find taste buddies, which are peers
that share similar interests in files. This enables
quick finding of content that a user is interested
in and builds on the idea of social phenomena.

Although not an anonymization network,
Tribler does accomplish a lot on the topic of
decentralization. The BuddyCast protocol uses
BitTorrent infohashes to spread information
completely decentralized throughout the net-
work. With future work on anonymization, this
can be a promising approach to anonymous file
sharing.

5.9 NISAN

NISAN, or Network Information Service for
Anonymization Networks [3], is an anonymiza-
tion network which implements a distributed
node discovery. Not only does a central node
administrator (the directory server in Tor) im-
ply trust in those servers, Panchenko et al. also
argue that a central node administration (the
directory server in Tor) does not scale. The cur-
rent directory server protocol was already im-
proved two times to reduce bandwidth costs,
with a fairly low amount of users.

NISAN implements a DHT-based approach
(Kademlia) for distributing node information,
in such a way that does not require the client to
know about all the nodes in the network (such
as in Tor). To build a circuit, NISAN generates
random IDs and searches for the closest hit
throughout the network. This makes it possible
to build a path with nodes picked in a random,
uniform way among all nodes, without the
trust of a third party.

This does not fully protect against finger-
printing or bridging attacks (passive attacks),
and suggest to do random walks throughout
the network to mitigate that. The authors admit
however this decreases the protection against
an active attack.

5.10 Torsk

Torsk [21] is an extension to Tor, designed to
be an interoperable replacement for the circuit
creation and directory servers as used by Tor.
The authors argue that the current directory
servers do not scale, with the percentage of
the traffic in a network dedicated to node dis-
covery growing as the number of nodes grow.
With the 2009 version of Tor, they argue that
100% of the networks traffic would consist of

node discovery traffic with roughly 1.2 million
clients.

Instead of the directory servers, it uses a
DHT and a new neighbourhood authority. The
DHT is a combination of Kademlia DHT and
Myrmic DHT. Kademlia DHT was chosen be-
cause it is already widely used and it has
proven itself for a large number of users.

The Myrmic DHT runs on top of Kademlia,
and introduces the neighbourhood authority.
This authority issues certificates to nodes that
participate in the DHT, but it does not par-
ticipate in the DHT itself. The neighbourhood
authority makes this solution not a fully decen-
tralized one, but its role is a lot smaller than the
current directory servers. This does not solve
the trust issue, but it does solve the scalability
issue.

5.11 Comparison

Using the properties of each of the previously
described networks, we can now draw a com-
parison between these networks. This is done
in the form of a tabular overview, see table 1.
The networks are compared according to the
following features:

• Compatibility with Tor: Is the network
compatible with Tor? Could the network
or some features of the network be used
for the decentralization of Tor?

• Public implementation: Does a publicly
available implementation exist?

• Used in practice: Is the network used in
practice?

• Attack resistance: What weaknesses does
the network have and which attacks are
possible?

• Unlinkability: Does the network hide the
identities of the sender and/or receiver?

6 THE DOCUMENTED STRUGGLE OF
ALTERNATIVE INTERNET PROJECTS

The largest repository of decentralization at-
tempts is located at redecentralize.org. The aim
of this repository is to ‘get decentralized prod-
ucts into the hands of billions’[29]. One of the
ways they do this, is by maintaining a Github

Name Year To
r

in
te

ro
pe

ra
bi

li
ty

Pu
bl

ic
im

pl
em

en
ta

ti
on

U
se

d
in

pr
ac

ti
ce

(D
)D

oS
pr

ot
ec

ti
on

Sy
bi

l
at

ta
ck

pr
ot

ec
ti

on

M
IT

M
pr

ot
ec

ti
on

U
nl

in
ka

bi
li

ty

Gnutella 2000 x X X x x x x
Freenet 2001 x X X X x x X
Tapestry 2001 x X X X x x x
Pastry 2001 x X X X x x x
MorphMix 2002 x X x X x ? X
AP3 2004 x x x ? ? ? X
Tarzan 2002 x x x ? X ? X
Tribler 2008 x X X X x x x
NISAN 2009 x x x ? ? X X
Torsk 2009 X x x X X X X

TABLE 1: A comparison of decentralized peer-
to-peer overlay networks.

repository3 with projects that in some way help
to decentralize the internet. The struggle and
pains of these projects illustrates the difficulty
of decentralization. No projects succeeded in
creating an alternative internet infrastructure.
The projects range from self hosted cloud ap-
plications, to crypto currencies, to anonymous
networks.

We made a significant contribution to this
project index. We created a table containing
each of the listed systems that shows statistics
such as the total lines of code (LOC), age,
number of contributors and commits, activity
and (main) programming language, sourced
from Ohloh. This should make it easier to filter
out poorly maintained or otherwise deprecated
projects. The table is available on the same
Github repository.

An excerpt of the table is included as table 2.
In this instance, we chose to sort the table on
the number of commits, because we found that
this most accurately represents both the matu-
rity and activity of the projects. Other statistics
such as LOC might not be very relevant on
their own, because some projects include big
libraries or other projects in their repository.

In the table we notice that three of the
entries are privacy-enhancing networks that

3. Found at https://github.com/redecentralize/alternative-
internet

aim to provide unlinkability (Freenet, Tor and
GNUnet), plus one that is currently in the pro-
cess of implementing such a feature (Tribler).
Furthermore we notice that, once above a cer-
tain threshold, none of the statistics have a clear
effect on a projects popularity. For example,
Freenet and Tor have similar statistics, while
the number of Tor users [36] is several orders of
magnitude higher than the number of Freenet
users [8].

So although clear differences aren’t directly
noticeable, we hope that this comparison will
provide more insight into which systems are
more serious and mature than others, while
also showing which ones are still actively main-
tained.

7 CONCLUSION

We explained how the leading privacy-
enhancing technology Tor works and which
components define a Tor network. Further-
more, we looked at the main disadvantages
and problems Tor is currently facing. We in-
vestigated the issues around decentralization
and compared systems that currently have a
decentralized structure and/or mechanism.

From table 1, we conclude that there is no
fully decentralized system capable of offering
Tor anonymity today. Decentralized systems
that do exist such as Tarzan, I2P, Torsk or
Gnutella, show promising attempts to decen-
tralize and anonymize the internet. Yet each of
these systems either lacks in performance or is
vulnerable to some type of attack.

For the first time we document in detail,
the amount of wasted effort and pain spent
in decentralization. The current generation of
technology lead by Tor still has room for im-
provement, while the next generation is only
just appearing on the horizon. The major prob-
lems involving decentralization are excruciat-
ingly difficult to overcome. None of the projects
have succeeded in making the internet secure
and private.

REFERENCES

[1] Timothy G Abbott, Katherine J Lai, Michael R Lieberman,
and Eric C Price. Browser-based attacks on tor. In Privacy
Enhancing Technologies, pages 184–199. Springer, 2007.

Name Language Age Last activity LOC Commits Contributors
1 ownCloud PHP 6 years 2014-03-15 1,297 K 34,391 392
2 Freenet Java 13 years 2014-03-15 442 K 32,009 183
3 Tor C 12 years 2014-03-13 329 K 29,200 184
4 GNUnet C 8 years 2014-03-13 427 K 21,398 37
5 StatusNet PHP 6 years 2014-03-14 230 K 14,877 92
6 Diaspora* Ruby 3 years 2014-03-14 51 K 14,202 368
7 SlapOS Python 8 years 2014-03-15 588 K 14,046 93
8 Tahoe-LAFS Python 7 years 2014-03-13 158 K 11,565 54
9 Tribler Python 8 years 2014-03-15 148 K 11,521 48

10 Lorea PHP 6 years 2014-03-12 873 K 11,066 96

TABLE 2: The top 10 projects from the Alternative Internet repository by number of commits
(as of 2014-03-15).

[2] Mashael AlSabah and Ian Goldberg. Pctcp: per-circuit
tcp-over-ipsec transport for anonymous communication
overlay networks. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pages
349–360. ACM, 2013.

[3] Arne Rache Andriy Panchenko, Stefan Richter. In NISAN:
Network Information Service for Anonymization Networks,
2006.

[4] Stephanos Androutsellis-Theotokis and Diomidis Spinel-
lis. A survey of peer-to-peer content distribution tech-
nologies. ACM Computing Surveys (CSUR), 36(4):335–371,
2004.

[5] Michael Backes, Aniket Kate, and Esfandiar Mohammadi.
Ace: an efficient key-exchange protocol for onion routing.
In Proceedings of the 2012 ACM workshop on Privacy in the
electronic society, pages 55–64. ACM, 2012.

[6] Kevin Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi
Kohno, and Douglas Sicker. Low-resource routing attacks
against tor. In Proceedings of the 2007 ACM workshop on
Privacy in electronic society, pages 11–20. ACM, 2007.

[7] Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Wein-
mann. Content and popularity analysis of tor hidden
services. arXiv preprint arXiv:1308.6768, 2013.

[8] Generated by operhiem1 using pyProbe. Freenet statistics.
Available at http://asksteved.com/stats/.

[9] David L Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Communications of the
ACM, 24(2):84–90, 1981.

[10] Roger Dingledine, Nick Mathewson, and Paul Syverson.
Tor: The second-generation onion router. Technical report,
DTIC Document, 2004.

[11] Roger Dingledine and Steven J Murdoch. Performance
improvements on tor or, why tor is slow and
what we’re going to do about it. Online:
http://www.torproject.org/press/presskit/2009-03-11-
performance.pdf, 2009.

[12] Roger Dingledine, Dan S Wallach, et al. Building incen-
tives into tor. In Financial Cryptography and Data Security,
pages 238–256. Springer, 2010.

[13] John R Douceur. The sybil attack. In Peer-to-peer Systems,
pages 251–260. Springer, 2002.

[14] Michael J Freedman and Robert Morris. Tarzan: A peer-to-
peer anonymizing network layer. In Proceedings of the 9th
ACM conference on Computer and communications security,
pages 193–206. ACM, 2002.

[15] David M Goldschlag, Michael G Reed, and Paul F Syver-
son. Hiding routing information. In Information Hiding,
pages 137–150. Springer, 1996.

[16] IETF. The diffie-hellman key agreement method. Avail-
able at https://www.ietf.org/rfc/rfc2631.txt.

[17] IETF. The transport layer security (tls) protocol. Available
at http://tools.ietf.org/html/rfc5246.

[18] Rob Jansen, Aaron Johnson, and Paul Syverson. Lira:
Lightweight incentivized routing for anonymity.

[19] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi
Sharma, Steven Lim, et al. A survey and comparison of
peer-to-peer overlay network schemes. IEEE Communica-
tions Surveys and Tutorials, 7(1-4):72–93, 2005.

[20] Damon McCoy, Kevin Bauer, Dirk Grunwald, Tadayoshi
Kohno, and Douglas Sicker. Shining light in dark places:
Understanding the tor network. In Privacy Enhancing
Technologies, pages 63–76. Springer, 2008.

[21] Jon McLachlan, Andrew Tran, Nicholas Hopper, and
Yongdae Kim. Scalable onion routing with torsk. In
Proceedings of the 16th ACM conference on Computer and
communications security, pages 590–599. ACM, 2009.

[22] Alan Mislove, Gaurav Oberoi, Ansley Post, Charles Reis,
Peter Druschel, and Dan S Wallach. Ap3: Cooperative,
decentralized anonymous communication. In Proceedings
of the 11th workshop on ACM SIGOPS European workshop,
page 30. ACM, 2004.

[23] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. Consulted, 1:2012, 2008.

[24] Arjun Nambiar and Matthew Wright. Salsa: a structured
approach to large-scale anonymity. In Proceedings of
the 13th ACM conference on Computer and communications
security, pages 17–26. ACM, 2006.

[25] Andriy Panchenko, Stefan Richter, and Arne Rache.
Nisan: network information service for anonymization
networks. In Proceedings of the 16th ACM conference
on Computer and communications security, pages 141–150.
ACM, 2009.

[26] Charles Poladian. Silk road shut down by fbi, owner
ross william ulbricht, ’dread pirate roberts,’ arrested.
Available at http://www.ibtimes.com/silk-road-shut-
down-fbi-owner-ross-william-ulbricht-dread-pirate-
roberts-arrested-1413966.

[27] Johan A Pouwelse, Pawel Garbacki, Jun Wang, Arno
Bakker, Jie Yang, Alexandru Iosup, Dick HJ Epema, Mar-
cel Reinders, Maarten R Van Steen, and Henk J Sips.
Tribler: a social-based peer-to-peer system. Concurrency
and Computation: Practice and Experience, 20(2):127–138,
2008.

[28] Ryan Pries, Wei Yu, Xinwen Fu, and Wei Zhao. A new
replay attack against anonymous communication net-
works. In Communications, 2008. ICC’08. IEEE International
Conference on, pages 1578–1582. IEEE, 2008.

[29] Redecentralize Project. About redecentralize.org. Avail-
able at http://redecentralize.org/about/.

[30] Muntasir Raihan Rahman. A survey of incentive mecha-
nisms in peer-to-peer systems, 2009.

[31] Marc Rennhard and Bernhard Plattner. Introducing
morphmix: peer-to-peer based anonymous internet usage
with collusion detection. In Proceedings of the 2002 ACM
workshop on Privacy in the Electronic Society, pages 91–102.
ACM, 2002.

[32] Matei Ripeanu. Peer-to-peer architecture case study:
Gnutella network. In Peer-to-Peer Computing, 2001. Pro-
ceedings. First International Conference on, pages 99–100.
IEEE, 2001.

[33] Antony Rowstron and Peter Druschel. Pastry: Scalable,
decentralized object location, and routing for large-scale
peer-to-peer systems. In Middleware 2001, pages 329–350.
Springer, 2001.

[34] Arno Wacker, Gregor Schiele, Sebastian Holzapfel, and
Torben Weis. A nat traversal mechanism for peer-to-peer
networks. In Peer-to-Peer Computing, pages 81–83, 2008.

[35] Tao Wang, Kevin Bauer, Clara Forero, and Ian Goldberg.
Congestion-aware path selection for tor. In Financial
Cryptography and Data Security, pages 98–113. Springer,
2012.

[36] Tor Metrics Project website. Tor project: Anonimity online.
Available at https://metrics.torproject.org.

[37] Tor Project website. Tor project: Anonimity online. Avail-
able at http://torproject.org.

	1 Introduction
	2 Introduction to Tor
	2.1 Onion routing
	2.2 Directory servers
	2.3 Relay and exit nodes
	2.4 Circuit creation
	2.5 Disadvantages
	2.6 Tor stinks?

	3 Tor vulnerabilities and attacks
	3.1 Browser based attacks
	3.2 Low-resource routing attacks
	3.3 Sybil attacks
	3.4 Replay attacks

	4 Problems with decentralizing
	4.1 Incentives in decentralized systems
	4.2 NAT traversal
	4.3 Bootstrapping new nodes
	4.4 Key exchange

	5 Decentralized privacy-enhancing systems
	5.1 Gnutella
	5.2 Freenet
	5.3 Tapestry
	5.4 Pastry
	5.5 MorphMix
	5.6 AP3
	5.7 Tarzan
	5.8 Tribler
	5.9 NISAN
	5.10 Torsk
	5.11 Comparison

	6 The documented struggle of alternative internet projects
	7 Conclusion
	References

